On bounding spline interpolation

نویسنده

  • Carl de Boor
چکیده

as a function of s at the k+ 1 points ti, . . . , ti+k. The elements of $k,t are called polynomial splines of order k with knot sequence t. Let τ := (τi) n 1 be a strictly increasing real sequence. As is shown in [12], there exists, for given f , exactly one s ∈ $k,t, such that s(τi) = f(τi), i = 1, . . . , n, if and only if Ni,k(τi) 6= 0, i = 1, . . . , n, i.e., if and only if ti < τi < ti+k, i = 1, . . . , n. (1) Hence, assuming τ to satisfy (1), the conditions

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Piecewise cubic interpolation of fuzzy data based on B-spline basis functions

In this paper fuzzy piecewise cubic interpolation is constructed for fuzzy data based on B-spline basis functions. We add two new additional conditions which guarantee uniqueness of fuzzy B-spline interpolation.Other conditions are imposed on the interpolation data to guarantee that the interpolation function to be a well-defined fuzzy function. Finally some examples are given to illustrate the...

متن کامل

INTERPOLATION BY HYPERBOLIC B-SPLINE FUNCTIONS

In this paper we present a new kind of B-splines, called hyperbolic B-splines generated over the space spanned by hyperbolic functions and we use it to interpolate an arbitrary function on a set of points. Numerical tests for illustrating hyperbolic B-spline are presented.

متن کامل

Interval B-Spline Curve Evaluation Bounding Point Cloud

We present an algorithm for bounding a piece of strip-shaped point cloud without self-intersections with an interval B-spline curve. Firstly we calculate the boundary points of the point cloud, and then bound it with an interval B-spline curve of which two pieces of boundary curves interpolate these boundary points. For the algorithm there are important applications in product shape verifying m...

متن کامل

Convergence of Integro Quartic and Sextic B-Spline interpolation

In this paper, quadratic and sextic B-splines are used to construct an approximating function based on the integral values instead of the function values at the knots. This process due to the type of used B-splines (fourth order or sixth order), called integro quadratic or sextic spline interpolation. After introducing the integro quartic and sextic B-spline interpolation, their convergence is ...

متن کامل

SOLVING INTEGRO-DIFFERENTIAL EQUATION BY USING B- SPLINE INTERPOLATION

In this paper a numerical technique based on the B-spline method is presented for the solution of Fredholm integro-differential equations. To illustrate the efficiency of the method some examples are introduced and the results are compared with the exact solution.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006